数据分析师常用的四种数据分析工具有哪些?
众所周知,大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。它的含义十分广泛,并庞大复杂,
1、数据处理工具:Excel
在Excel,需要重点了解数据处理的重要技巧及函数的应用,特别是数据清理技术的应用。这项运用能对数据去伪存真,掌握数据主动权,全面掌控数据;Excel数据透视表的应用重在挖掘隐藏的数据价值,轻松整合海量数据:各种图表类型的制作技巧及Power Query、Power Pivot的应用可展现数据可视化效果,让数据说话。因此想从事数据分析岗位的,需要快速掌握快各种Excel数据处理与分析技巧。
2、数据库:MySQL
Excel如果能够玩的很转,能胜任一部分数据量不是很大的公司。但是基于Excel处理数据能力有限,如果想胜任中型的互联网公司中数据分析岗位还是比较困难。因此需要学会数据库技术,一般Mysql。你需要了解MySQL管理工具的使用以及数据库的基本操作;数据表的基本操作、MySQL的数据类型和运算符、MySQL函数、查询语句、存储过程与函数、触发程序以及视图等。比较高阶的需要学习MySQL的备份和恢复;熟悉完整的MySQL数据系统开发流程。
3、数据可视化:Tableau & Echarts
如果说前面2条是数据处理的技术,那么在如今“颜值为王”的现在,如何将数据展现得更好看,让别人更愿意看,这也是一个技术活。好比公司领导让你对某一个项目得研究成果做汇报,那么你不可能给他看单纯的数据一样,你需要让数据更直观,甚至更美观
如何理解数据可视化?像我们以前上学的时候学过的柱状图,饼状图,也是数据可视化的一种。只是在现在,简单的柱状图已经不能满足工作所需。目前比较流行的商业数据可视化工具是Tableau & Echarts。
Echarts是开源的,代码可以自己改,种类也非常丰富,这里不多做介绍,可以去创建一个工作区了解下。
4、大数据分析:SPSS & Python& HiveSQL 等
很多人都认为Excel是轻数据处理工具,但如果说Excel是“轻数据处理工具”,Mysql是“中型数据处理工具”那么,大数据分析,涉及的面就非常广泛,技术点涉及的也比较多。这也就是为什么目前互联网公司百万重金难求大数据分析师的原因。
大数据分析需要处理海量的数据,这对于数据分析师的工作能力要求就比较高,一般来说,大数据分析师需要会
(1)会使用Hive的SQL方法HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大数据集合。知道Hive如何在Hadoop生态系统进行数据分析工作。
(2)会一些SPSS modeler基础应用,这部分技能对应数据建模分析师
(3)何使用R语言进行数据集的创建和数据的管理等工作;会使用R语言数据可视化操作,让学员学会如何用R语言作图,如条形图、折线图和组合图等等;是R语言数据挖掘,本部分数据挖掘工程师
(4)用Python来编写网络爬虫程序,从页面中抓取数据的多种方法,提取缓存中的数据,使用多个线程和进程来进行并发抓取等。
一般数据分析师常用的四种数据分析工具是什么?对于这个问题就介绍到这里了,如果你想要了解更多可关注容大教育。
文中图片素材来源网络,如有侵权请联系删除
厚学推荐学校
网上报名
新闻资讯
更多>>-
大数据分析:我比你更懂你自己,不信来试试
2018-01-09
-
8句话告诉你,人工智能究竟有多吃香!
2018-01-09
-
容大2018年校企合作协同育人项目
2018-07-17
-
容大带你了解一下大数据
2018-07-17
-
容大教育实力打造AI精英
2018-07-17