高中数学三角函数重要公式大汇总。三角函数是高考数学中非常重点的知识,但是由于函数公式非常多,经常会有记错或者用错的状况,这样对考试非常不利。今天来一起看看高中数学三角函数公式有哪些?一起来学习一下。
两角和公式
sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)
cot(a+b)=(cotacotb-1)/(cotb+cota) cot(a-b)=(cotacotb+1)/(cotb-cota)
倍角公式
tan2a=2tana/(1-tan2a) cot2a=(cot2a-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanatanbtan(a+b)+tana+tanb-tan(a+b)=0
四倍角公式:
sin4a=-4*(cosa*sina*(2*sina^2-1))
cos4a=1+(-8*cosa^2+8*cosa^4)
tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)
五倍角公式:
sin5a=16sina^5-20sina^3+5sina
cos5a=16cosa^5-20cosa^3+5cosa
tan5a=tana*(5-10*tana^2+tana^4)/(1-10*tana^2+5*tana^4)
六倍角公式:
sin6a=2*(cosa*sina*(2*sina+1)*(2*sina-1)*(-3+4*sina^2))
cos6a=((-1+2*cosa^2)*(16*cosa^4-16*cosa^2+1))
tan6a=(-6*tana+20*tana^3-6*tana^5)/(-1+15*tana^2-15*tana^4+tana^6)
七倍角公式:
sin7a=-(sina*(56*sina^2-112*sina^4-7+64*sina^6))
cos7a=(cosa*(56*cosa^2-112*cosa^4+64*cosa^6-7))
tan7a=tana*(-7+35*tana^2-21*tana^4+tana^6)/(-1+21*tana^2-35*tana^4+7*tana^6)
八倍角公式:
sin8a=-8*(cosa*sina*(2*sina^2-1)*(-8*sina^2+8*sina^4+1))
cos8a=1+(160*cosa^4-256*cosa^6+128*cosa^8-32*cosa^2)
tan8a=-8*tana*(-1+7*tana^2-7*tana^4+tana^6)/(1-28*tana^2+70*tana^4-28*tana^6+tana^8)
九倍角公式:
sin9a=(sina*(-3+4*sina^2)*(64*sina^6-96*sina^4+36*sina^2-3))
cos9a=(cosa*(-3+4*cosa^2)*(64*cosa^6-96*cosa^4+36*cosa^2-3))
tan9a=tana*(9-84*tana^2+126*tana^4-36*tana^6+tana^8)/(1-36*tana^2+126*tana^4-84*tana^6+9*tana^8)
十倍角公式:
sin10a=2*(cosa*sina*(4*sina^2+2*sina-1)*(4*sina^2-2*sina-1)*(-20*sina^2+5+16*sina^4))
cos10a=((-1+2*cosa^2)*(256*cosa^8-512*cosa^6+304*cosa^4-48*cosa^2+1))
tan10a=-2*tana*(5-60*tana^2+126*tana^4-60*tana^6+5*tana^8)/(-1+45*tana^2-210*tana^4+210*tana^6-45*tana^8+tana^10)
·公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))
cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa))
和差化积
2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)
2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb
cota+cotbsin(a+b)/sinasinb -cota+cotbsin(a+b)/sinasinb
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosb 注:角b是边a和边c的夹角
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
更多资讯请关注:南京培训网
温馨提示