请留下您的手机号
我们即刻安排课程老师为您回电!
马上通话
您好
请留下您的联系方式,我们将主动给您回电!
第一时间为您安排就近试听!
马上申请
培训首页 > 高中辅导班培训讯息 > 延安高中课外辅导怎么样
高一英语寒假辅导课程

延安高中课外辅导怎么样

  延安高中课外辅导?高考保持平常心,缓解考试焦虑考试焦虑是一种临考前常见的内心感到紧张的情绪反应。心理学中有一个定律叫做叶克斯一多得森法则,是心理学家叶克斯和多得森发现的。该定律描述了焦虑程度和解决问题的效率之间的关系,即二者之间的关系呈“倒U型曲线”:焦虑程度过高和焦虑程度过低时的效率都很低,而中等焦虑时的效率高。所以,适度的考试焦虑有利于提高学习效率和学习成绩。一般而言,考试焦虑是由各种压力和个人的性格等因素造成的。高三学生在复习中应该保持平常心,缓解考试焦虑。这里介绍几种简单的方法供高三学生参考使用。

  这些知识你得知道!

  上课外辅导班需要注意要保证孩子自由活动的时间,凡事物极必反。如果课外辅导班占用时间过多,或者课后作业挤占了休息和运动的时间,对孩子反而会带来负面影响。学习是孩子青少年时期重要的任务,但不是的任务。在这个宝贵的阶段,发现并发展兴趣、认识自己并寻找未来的方向、以及拥有健康的身体和完善的人格,对孩子长期的发展更加重要。因此,自由活动时间对于孩子,不是可有可无,而是必不可少!

  延安高中课外辅导

  高中辅导,你看看

  高中数学是很多同学高考道路上的拦路虎,很多同学一致回答:大题没思路。高考数学6道大题,每题12分,一分都不能丢啊!

  选择填空题

  1、易错点归纳:

  九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

  针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

  2、答题方法:

  选择题十大速解方法:

  (十大解题技巧 你会了没)

  排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;

  填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

  解答题

  专题一、三角变换与三角函数的性质问题

  1、解题路线图

  ①不同角化同角

  ②降幂扩角

  ③化f(x)=Asin(ωx+φ)+h

  ④结合性质求解。

  2、构建答题模板

  ①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

  ②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

  ③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。

  ④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

  专题二、解三角形问题

  1、解题路线图

  (1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

  (2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

  2、构建答题模板

  ①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

  ②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

  ③求结果。

  ④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

  专题三、数列的通项、求和问题

  1、解题路线图

  ①先求某一项,或者找到数列的关系式。

  ②求通项公式。

  ③求数列和通式。

  2、构建答题模板

  ①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

  ②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。

  ③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。

  ④写步骤:规范写出求和步骤。

  ⑤再反思:反思回顾,查看关键点、易错点及解题规范。

  专题四、利用空间向量求角问题

  1、解题路线图

  ①建立坐标系,并用坐标来表示向量。

  ②空间向量的坐标运算。

  ③用向量工具求空间的角和距离。

  2、构建答题模板

  ①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。

  ②写坐标:建立空间直角坐标系,写出特征点坐标。

  ③求向量:求直线的方向向量或平面的法向量。

  ④求夹角:计算向量的夹角。

  ⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。

  专题五、圆锥曲线中的范围问题

  1、解题路线图

  ①设方程。

  ②解系数。

  ③得结论。

  2、构建答题模板

  ①提关系:从题设条件中提取不等关系式。

  ②找函数:用一个变量表示目标变量,代入不等关系式。

  ③得范围:通过求解含目标变量的不等式,得所求参数的范围。

  ④再回顾:注意目标变量的范围所受题中其他因素的制约。

  专题六、解析几何中的探索性问题

  1、解题路线图

  ①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)

  ②将上面的假设代入已知条件求解。

  ③得出结论。

  2、构建答题模板

  ①先定:假设结论成立。

  ②再推理:以假设结论成立为条件,进行推理求解。

  ③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。

  ④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。

  专题七、离散型随机变量的均值与方差

  1、解题路线图

  (1)①标记事件;②对事件分解;③计算概率。

  (2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。

  2、构建答题模板

  ①定元:根据已知条件确定离散型随机变量的取值。

  ②定性:明确每个随机变量取值所对应的事件。

  ③定型:确定事件的概率模型和计算公式。

  ④计算:计算随机变量取每一个值的概率。

  ⑤列表:列出分布列。

  ⑥求解:根据均值、方差公式求解其值。

  专题八、函数的单调性、极值、值问题

  1、解题路线图

  (1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。

  (2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。

  2、构建答题模板

  ①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)

  ②解方程:解f′(x)=0,得方程的根。

  ③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。

  ④得结论:从表格观察f(x)的单调性、极值、值等。

  ⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。

  延安高中课外辅导:

  以上就是关于“延安高中课外辅导?”的介绍,真想取得证,正确挑选一所好的培训机构,亲自到去了解跟试试才是主要的,在网上多进行一些参阅了解,看看各自的口碑如何再做决定。

  延安高中课外辅导?如需高考辅导相关课程,请联系网站,提供培训内容讲解服务!

文中图片素材来源网络,如有侵权请联系删除

温馨提示

延安学大教育中小学辅导宝塔校区

学大教育专注于学生学习能力的培养和学科知识的辅导,视教学质量为生命,深受学生和家长的认可,口口相传,成就了全国较大规模的教育连锁机构。"人之蕴蓄,由学而大","学大教育"秉承爱的教育理念。其中学校主要开设课程有:高中辅导班、数学辅导班、英语个性辅导班、延安高中
咨询热线: 400-867-3368
免费通话 申请试听